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Abstract 

Neutron spectrum shaping is a potentially unique way to create a neutron energy spectrum 

that could be used to generate synthetic debris for nuclear forensics purposes.  An energy tuning 

assembly (ETA) was previously designed and built for the purpose of irradiating samples with a 

combination of a thermonuclear and a prompt fission neutron spectrum. Initial research was 

performed to characterize the performance of the ETA at the Lawrence Berkeley National 

Laboratory 88-Inch Cyclotron using 33 MeV deuteron breakup on tantalum as the neutron source. 

This research analyzes detector responses collected from three EJ-309 detectors used to 

characterize the ETA generated neutron field.   The data analyzed consists of EJ-309 scintillator 

responses taken as full waveform measurements both with and without the ETA.  A signal 

processing chain was developed to reduce the full waveform data into a pulse height spectrum. 

The primary goal was to develop a processing chain that optimized pulse shape discrimination 

performance to improve the discrimination between neutrons and gammas to thereby enable 

characterization of particle type down to the software threshold.  This spectrum was then compared 

with a similar data set previously analyzed using a different pulse shape discrimination algorithm.  

It was found that the processing chain developed allowed for greater flexibility in determining the 

PSD parameters, which allowed for a greater degree of particle discrimination at low pulse heights. 
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PULSE HEIGHT SPECTRA ANALYSIS OF A 
NEUTRON ENERGY TUNING ASSEMBLY

I. Introduction

1.1 Motivation 

The U.S. has not tested a nuclear weapon since the Comprehensive Nuclear Test-Ban 

Treaty (CTBT) in 1992.  However, subsequent administrations and Congress have reaffirmed the 

importance of the U.S. nuclear arsenal.  The goal of maintaining an effective arsenal has been 

accomplished through the Stockpile Stewardship Program (SSP) implemented under President 

Clinton in 1995 [1].   

Under this program, annual assessments are made of the health and status of each weapon 

system in the U.S. arsenal using computer simulations, component level testing, 

subcritical experiments using radioactive materials and high explosives, nonnuclear experiments, 

and analysis of historical data from past nuclear tests [2].  This type of testing has enabled the 

U.S. to maintain the nuclear weapons arsenal with confidence that the systems will work without 

a full test for over 25 years [3].   

There are limits to what the Stockpile Stewardship Program and associated advanced 

simulation and computing capabilities can address.  To cover these assessment gaps, the 

Department of Defense and Department of Energy have developed and maintained several 

unique facilities shown in Table 1.  These facilities and their associated tools are, 

unfortunately, often undervalued or underfunded [4].  This results in gaps in capabilities or the 

inability to properly assess and certify systems.  The scope of this problem is displayed in Figure 

1 for nuclear weapon effects.  
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Table 1. Nuclear Weapons Effects Simulator Capabilities [5].  
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Figure 1. Current Survivability Risks of Critical Capabilities Against Nuclear Weapons [5]. 

One of the more prevalent gaps is the ability to reproduce the neutron environment from a 

nuclear detonation, which includes neutrons from both the prompt fission neutron spectrum (from 

fission of fissile or fissionable material) and the thermonuclear spectrum (from D-T fusion).  This 

gap extends to the production of post-detonation debris for the technical nuclear forensics 

attribution mission.   

Generating the correct neutron spectrum is important for this mission because insufficient 

nuclear data exists for energy-dependent fission product yields [6].  The current Evaluated Nuclear 

Data File (ENDF) libraries are based on the original England and Rider evaluation with a literature 

cutoff date of 1989.  The libraries also only contain the fission product yield for thermal, fast 

(fission - like spectrum with average energy of 0.5 MeV), and high (14.1 MeV) energy neutrons 
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[7]. There is very little data for neutron energies above 6 MeV, so the energy dependence when 

multi-energy fission is involved is difficult to benchmark [8].  There have been a number of mono-

energetic measurements for select fission products and the uranium fission systems that could be 

used to supplement the ENDF libraries [9]–[12].  Even with these measurements, there is only a 

limited amount of data reported on select isotopes, thereby limiting the ability to generate synthetic 

debris with surrogate methods. 

Several sources can match the spectral shape of the nuclear weapon neutron environment 

well in the keV to a few MeV range, but they lack in overall intensity.  While some facilities are 

capable of producing the high energy thermonuclear component that is significant in causing 

displacement damage and electromagnetic effects, all have significant low energy components that 

would dominate nuclear reactions such as fission.  There does not exist an operational facility 

which does all of the above.  Additionally, even the few facilities shown in Table 1 that have been 

used to accomplish a portion of this mission space are at risk.  Facilities like the Rotating Target 

Neutron Source (RTNS) or the Sandia Pulsed Reactor (SPR) have ceased operation [5], [13].  It 

is likely that the White Sands Missile Range (WSMR) Fast Burst Reactor (FBR) will be closing 

as soon as an alternative can be found [14].   

With the possible exception of the National Ignition Facility (NIF), most other neutron 

sources were found to have a poor match to the proper timing profile and sufficient intensity.  

Getting these neutron spectral characteristics correct is important for studying radiation damage 

and understanding second order nuclear reactions.  However, the neutron energy spectrum at NIF 

is a poor match for the desired environment. The NIF has a significant flux of neutrons due to D-

T fusion that captures the thermonuclear portion of the thermonuclear and prompt fission neutron 

spectrum, but is has virtually zero prompt fission component.   
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To counter this, one approach would be to tailor the NIF neutron spectrum by using neutron 

moderators, filters, and reflectors to obtain the neutron spectrum required to replicate the weapon 

environment.  Previous research developed an Energy Tuning Assembly (ETA) to form a generic 

thermonuclear and prompt fission neutron spectrum. The goal of the overall research effort is to 

reproduce the objective spectrum across an highly enriched uranium (HEU) foil located inside of 

the ETA at NIF [15].  Prior to fielding on NIF, an initial study was conducted to characterize the 

ETA performance at the Lawrence Berkeley 88-Inch Cyclotron.   

For the experiment in question, the deuterons were accelerated to 33 MeV, and lined up 

for Cave 2, which is where the ETA and detectors were placed.  Once in line with the room, the 

deuterons broke up on a tantalum target resulting in gammas and neutrons at approximately a 1:1 

ratio [16].  The ultimate goal of this data analysis is to provide a development step for a planned 

NIF test that includes the generation of synthetic fission products. One of the short comings from 

the previous analysis was processing of only the pulse amplitude time data set, while very little of 

the collected data has been fully analyzed.  This data includes several complete sets of foil 

activation, pulse height spectra (PHS), HEU activation, pulse-amplitude-time, and full waveform 

data [15].  

1.2 Problem Description 

This research analyzed data that was collected in a series of experiments in 2017 but very little 

of the full waveform data has been analyzed.  The focus of this research includes developing an 

analysis chain for producing a neutron PHS and using the full waveform data to improve the 

particle type identification at low pulse heights.  This data will then be compared to the results of 

the pulse amplitude time data previously analyzed.  
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1.2.1 Objectives 

The objective of this research is to build an analysis chain for full waveform data from a 

validation experiment of the ETA at the 88-Inch Cyclotron at the Lawrence Berkeley National 

Labs.  The hypothesis is that using the full waveform will allow for better pulse shape 

discrimination down to the software threshold thereby increasing the range of neutron energies 

which contribute to the pulse height spectrum.  Specifically, this research aims to: 

1. Determine optimal method and set of PSD parameters for each detector channel and data

set

2. Determine the optimal signal analysis parameters for the integration window, threshold,

and the pile-up rejection, baseline offset, and baseline smoothing algorithms

3. Generate a neutron pulse height spectrum (PHS) for each data set and detector channel

4. Compare the results to previous analysis using different analysis algorithms and methods
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II. Background

2.1 Nuclear Reactions with Matter 

This section explores the main neutron interactions in the context of spectral shaping and 

detection.  Neutrons carry no charge and therefore cannot interact in matter by means of the 

Coulomb force.  When a neutron interacts with a material, it is generally with the nucleus of the 

atom and thus is either absorbed or scattered [17].  The majority of neutron detectors utilize some 

type of conversion of the incident neutron into secondary charged particles.  These particles can 

then be directly detected, and, with certain detectors, distinguished from other detected particle 

types. 

2.1.1 Elastic Scattering 

The microscopic cross section is higher for elastic scattering on smaller nuclei.  In such an 

interaction, a fraction of the energy is transferred to the nuclei that was struck.  The maximum 

energy loss for a neutron scattering off of a nucleus is given by  

( )
( )

2

max 2

1
1

1
A

Q E
A

 −
= − 
 + 

,  (1) 

where E is the initial neutron energy and A is the target atom mass.  Equation 1 shows that low-A 

materials, such as hydrogen, require fewer scatters before the neutron’s energy is brought down to 

thermal energies.  However, the use high- and mid-A isotopes as the scattering medium allows 

more control over the neutron energy population from elastic scattering [15].  This process is 

important to the detectors, EJ-309s, used in this experiment.  The EJ-309 uses a liquid organic 

scintillator based on the solvent xylene, chemical formula C₈H₁₀.  Therefore, when a neutron hits 

a carbon nucleus, it is likely most of the energy will be retained from this exchange.   
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2.1.2 Inelastic Scattering 

In inelastic neutron scattering, there is a difference in the total kinetic energy of the system 

before and after the interaction.  The nucleus absorbs a portion of the incoming neutron’s energy 

and is elevated to an excited state.  The de-excitation of the nucleus after the inelastic neutron 

scattering usually results in the emission of a gamma ray as the nucleus reverts to its ground state. 

The general trend in the nuclear excited state structure is a decrease in the energy of the lowest 

lying nuclear state and an increase in the number of states with increasing Z.  The increase in the 

number of states translates to a general increase in the inelastic scattering cross section for high Z 

materials, but these global trends are subject to significant local deviations because of shell and 

nuclear structure effects.  The differentiation of the cross-section and variable energy loss can be 

exploited to tune the spectral shaping of the neutrons incident on the ETA in the 100s of keV to 

several MeV range [15]. 

2.1.3 (n, xn) 

At high energies more than one neutron may be emitted after a reaction, resulting in 

reactions designated as (n, xn) reactions [18].  (n, xn) reactions are the result of the 

absorption of one neutron followed by the emission of two or more neutrons.  This interaction is 

through the compound nucleus formation process or pre-compound emission of a neutron with 

lower energy.  In the compound nucleus, the neutron shares its kinetic and binding energy with 

many nucleons thereby exciting the nucleus. The compound nucleus also “forgets” how it was 

formed, subsequently the decay of the excited compound nucleus results in a probability for one 

or more neutrons to “evaporate” [19].  The spectrum of neutrons evaporated at temperatures 

associated with fission differs from the temperatures associated with (n, xn) reactions for neutrons 
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with up to 14 MeV of kinetic energy.  These differences in the emitted energy spectrum tend to be 

minor making the (n, xn) reaction highly beneficial to the function of the ETA [15]. 

2.1.4 (n, γ) 

The final neutron reaction is the (n, γ) reaction, or more generally the (n, x) series of 

absorptive reactions.  These reactions absorb a neutron to form a compound nucleus and emits a 

particle, such as a gamma, to de-excite.  As absorbers, these reactions lower the overall neutron 

efficiency by removing neutrons from the system.  The reduction in neutron economy is generally 

not beneficial in the nuclear forensics application where higher efficiencies and fission yields are 

desired. 

However, the (n, γ) reactions can be useful in a few ways. First, the (n, x) reactions can be 

useful as an interaction mechanism for high energy neutrons. Second, the (n, γ) reactions are useful 

to absorb or “clean-up” any low energy neutrons resulting from over thermalization of the 

spectrum. Finally, (n, γ) reactions are useful as a diagnostic to measure the spectrum generated 

through activation analysis.  For the EJ-309s used in this research, the effect is more an (n,α) 

reaction where the neutron is absorbed by a carbon nucleus, creating an unstable compound 

nucleus which alpha decays.  This creates a third peak in the PSD spectrum which accounts for the 

alpha particles. 

2.2 Neutron Spectroscopy 

To characterize the ETA performance, the neutron energy spectrum must be measured. 

Efforts to perform neutron spectroscopy are limited by inelastic scattering that leads to a signal 

that is not necessarily proportional to the energy of the incident neutron. To overcome this 

limitation, many different techniques have been proposed, each with their own set of limitations. 
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The gold standard for neutron spectroscopy is the time-of-flight technique. This technique 

uses the time between the source generation, either measured from an accelerator beam or a 

chopper, and the time of detection to reconstruct the detected energy from the kinetic energy 

formula [20]. Time-of-flight methods can have very high measurement precision given the right 

combination of accelerator timing, flight path length, and fast detector response. In the ETA 

application, all of the initial timing is lost during the dozens to hundreds of interactions that occur 

within the ETA. Therefore, other techniques must be considered [15]. 

Proton recoil telescopes are another common neutron spectroscopy option. These 

telescopes use a thin hydrogenous material to scatter the neutrons into a detector located at a 

sufficient distance to subtend a small angle, thereby allowing reconstruction of the incident neutron 

energy from 

cos( )p nE E θ= ,  (2) 

where 
pE  is the detected energy of the recoiling proton, nE  is the incident neutron energy, and

θ  is the angle between the incident neutron beam and the detector. There is a tradeoff between 

energy resolution and efficiency, but proton recoil telescopes generally have extremely low 

detection efficiencies [17], [21]. Unfortunately, proton recoil telescopes will not work in the ETA 

application due to the lack of an incident collimated neutron beam. 

A third option is capture-gated spectrometers.  The idea is to record the total neutron energy 

through a series of multiple scatters within the detection volume, followed by capture with a highly 

absorbing dopant material such as 10B.  This approach has been successfully employed in many 

different configurations, and it would work for the 88-Inch Cyclotron neutron field measurements 

[17], [22], [23].  However, it could not be used in the ETA due to the needed detector being 

prohibitively large in order to obtain sufficient overall detection efficiencies for the high energy 



www.manaraa.com

11 

neutrons.  Additionally, since organic scintillators are typically used, the energy resolution is worse 

than the single scatter options due to the non-linearity of the response function. 

The fourth and final option considered is neutron spectrum unfolding. This method has 

been employed with a variety of detection methods including Bonner spheres [24], gas 

proportional counters [17], activation foils [25]–[27], and liquid scintillators [28]–[30]. The foil 

activation method was chosen in this work for measuring the volume averaged thermonuclear and 

prompt fission neutron spectrum internal to the ETA.  Liquid organic scintillators were chosen in 

this work due to their higher detection efficiencies and concurrent light yield measurements being 

conducted at the 88-Inch Cyclotron during the time of the collection.  

Figure 2. Example of particle interactions within a spherical proton recoil counter. 

2.2.1 Liquid Scintillators 

Scintillators are one of the oldest methods for radiation detection and as such have been 

studied extensively [17].  Organic scintillators work on the principle that incident radiation 



www.manaraa.com

12 

populates excited states in the molecule.  The states then depopulate via fluorescence.  These 

emitted photons can be collected and converted to an electrical signal to allow for quantitative 

measurement of the energy deposited.  For this experiment, liquid organic scintillators were used.  

These scintillators work via proton recoil as shown in Figure 2.  Recoil detectors are more 

commonly used to detect fast neutrons because the cross sections for elastic scatter are substantial 

at high energies. Nuclear recoil detectors also make better spectrometers since they can better 

preserve energy information [17], [29].  

Figure 3. Comparison of the light yield from electron and proton energy deposition in NE-102 [17]. 
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The relation between the deposited energy and the light output of the scintillator varies by 

scintillator and is dependent on the particle depositing the energy, as shown in Figure 3. In Figure 

3, electrons are the primary energy deposition mechanism for gamma interactions, while protons 

are the primary mechanism for neutron interactions within the scintillator. Accurately expressing 

the relationship between the energy deposition and light yield is crucial for unfolding the incident 

neutron flux [15], [17].  

One drawback of liquid scintillators for the application of this experiment is their size. This 

limits their employment to outside of the ETA, which eliminates the ability to directly measure the 

thermonuclear and prompt fission neutron spectrum. However, they can measure the scattered 

neutron field around the ETA, thereby providing secondary and complementary experimental 

validation for the spectral shaping performance of the ETA [15].  

Another drawback of liquid scintillators is their sensitivity to both neutron and gamma 

radiation. This can limit the ability to measure the neutron spectrum in a mixed field such as those 

present at NIF and the 88-Inch Cyclotron. A useful feature of some scintillators is the ability to 

use pulse shape discrimination to separate the neutron and gamma responses.  The pulse shaped 

discrimination is described in Section 2.3.3 [15].  

2.2.2 Neutron Spectrum Unfolding 

Neutron spectrum unfolding solves the “inverse problem” to determine the unknown incident 

energy dependent neutron flux given a set of measurements and a known detector response 

function. There are several methods and techniques that have been developed over the years.  

These techniques can be divided into different classes depending on the algorithm used for the 

unfolding.  The classes can be divided into the least-squares method, non-linear least-squares 
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method, and maximum entropy method.  While all the methods are sufficient to unfolding, one of 

the primary differences between them is how they handle uncertainty [31]. 

All of these methods seek to solve the problem 

( )(E)i iS R E dEφ= ∫ ,  (3) 

where iS , is the is the measured value of the detector system for the ith iteration, (E)iR  is the 

energy dependent response function for the ith measured channel, and ( )Eφ  is the incident neutron

energy spectrum.  In the forward version of the problem, ( )R E  and ( )Eφ  are known and S has a

unique solution. In the inverse problem, ( )Eφ is unknown, and Equation 3 has no unique solution

due to the degeneracy created by representing a continuous function with a finite number of 

measurements [31]. 

Equation 3 can be approximated into a linear matrix, as shown in Equation 4. This 

approximation can be expanded into matrix form as shown in Equation 5 where M is the number 

of measurements and N is the number of neutron energy groups.  Equation 4 also has no unique 

solution when N > M, and often not for N < M due to the correlations between the response 

functions [25], [31], [32].  

S Rφ=
 
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Equation 4 is often solved using iterative minimization approaches using the method of 

least squares instead of using the matrix form shown in Equation 5.  This method is known as χ2, 

which is given by 
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In Equation 6, n = (N−1), the number of the degrees of freedom, and σi is the uncertainty of the 

“ith” measurement [28], [31].  These methods are often modified to account for the non-negative 

flux requirements, smoothness of the solution, and the addition of a good starting spectrum to 

converge properly.  If done properly, these modifications to the equation are useful in overcoming 

the degeneracy of the solution space to unfold spectra that are consistent with TOF measured 

spectra [15].  One limitation of the direct application of minimization or “goodness of fit” methods 

is the difficulty in assessing the uncertainty of the unfold  [29], [31].  To overcome the difficulty 

in assessing the uncertainty of the unfold, maximum likelihood estimation and maximum entropy 

techniques were introduced [31], [33], [34]. These approaches construct a probability distribution 

over the degenerated solution space.  This allows for the estimation of uncertainty.  

Many computer programs have been developed to solve spectrum unfolding problems 

using variations of the basic mathematics described above [15], [35], [36].  Each code differs in 

the treatment of the uncertainty and the requirement for a guessed starting spectrum.   

2.3 Signal Processing 

2.3.1 Baseline Estimation 

The baseline estimation step enables the extraction of the signal from the background noise. 

One important part of signal extraction is the correct identification of the baseline level of the data.  

Baseline estimating can be broken into three main types of algorithms.  The first type of algorithms 

assumes the signal is all positive standing out from a zero-baseline level, then some kind of 

smoothing function would be an appropriate baseline. Alternatively, if the noise is assumed to 

fluctuate about a baseline level then some measure of center (median, mean, etc.) is more 
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appropriate. A third common type of analysis is continuous wavelet analysis, which does not have 

a separate baseline correction step as such; the baseline is automatically removed as part of the 

wavelet transformation [37].  This research used the second method because the algorithm uses a 

center moving average to dampen the noise, and baseline offset is determined to center the baseline 

at zero. 

2.3.2 Pulse Pile-up and Pile-up Rejection 

Pulse pile-up happens when pulses arrive within the pulse resolution time for the 

equipment.  When a pulse pile-up event occurs, the system cannot measure the pulse heights 

correctly. In pulse pile-up, the system will simply record the two pulses as a single event with 

combined pulse amplitude, this is also known as peak pile-up shown in the bottom of Figure 4.  If 

the pulses are spaced further apart, the system may simply accept both events separately and record 

them with incorrect pulse amplitude, this is known as tail pile-up shown in the top of Figure 4.  In 

both cases the events will have the wrong recorded energy deposition and the pulse height and 

subsequent neutron spectrum will be incorrect [17], [35]. 
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Figure 4. Pile-up from the undershoot of a preceding pulse and their effects on the pulse height spectrum [17]. 

2.3.3 Pulse Shape Discrimination 

Pulse shape discrimination (PSD) is the process of analyzing a pulse and discerning the 

particle type.  In this research, the key distinction is whether the pulse came from a neutron or a 

gamma.  This is necessary for the analysis of this data since the distribution of neutrons to total 

particles is approximately 50% as a result of the 33 MeV deuterons breakup on a Ta target, as [16].  

As the detectors used to collect fast neutrons are sensitive to both fast neutrons and gammas, 

having a good PSD process is vital to discerning a spectrum of only neutrons. 

There are two general approaches to carrying out PSD.  The first is based on electronic 

methods of sensing the differences in the rise time of the pulse.  The second derives the signal 
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based on the integral of the total charge over two different times [17].  The second is the method 

used in this research for the analysis of the data.  This method is possible due to the majority of 

light emitted from scintillators employed having a characteristic decay time of a few nanoseconds, 

with no longer lived component with a decay time of a few hundred nanoseconds. The fraction of 

the delayed component is dependent on the type of incident radiation causing the initial excitation, 

as shown in Figure 5 [17].  

Figure 5. Comparison of the delayed light emission fraction as a function of the type of incident radiation for 
crystal scintillators [17]. 

Two methods observed in this research were the Tail-to-Peak method, shown in Equation 

7, and the Tail-to-Total method, shown in Equation 8, as a ratio of charge in tail of the pulse to the 

total charge of the pulse [38]. 
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Once a PSD method is chosen, a Figure of Merit (FOM) needs to be defined to quantify 

the PSD. In the case of this research the FOM chosen is shown in Equation 9  

neutron gamma

sFOM
δ δ

=
+

,  (9) 

In Equation 9, s is the distance between the gamma and neutron peaks and δ  is the full width at 

half maximum of the peaks in the PSD plot [39]. 
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III. Methodology

The purpose of this thesis was to develop the method to process the raw pulse data and get 

a pulse height spectrum of the incident neutrons.  The data was delivered in the ROOT format with 

each detector as a separate tree.  These files were split into 1 GB sized files for data management 

purposes.  Each tree contained full waveform pulses for all of the recorded events.   

3.1 Experimental Setup 

For this research, the experiment was conducted at the Lawrence Berkeley National 

Laboratory 88-Inch Cyclotron. A facility drawing is shown in Figure 6, and the setup of the three 

EJ-309 detectors in relation to the ETA is shown in Figure 7.  The ETA and detectors were setup 

in Cave 02 in front of the 7-meter collimated flight path where the neutrons exited and interacted 

with the ETA and detectors.  The detectors were positioned to collect the scattered neutron particles 

after interacting with the ETA.  The data analyzed consists of EJ-309 scintillator responses taken 

as full waveform measurements both with and without the ETA.  The EJ-309s used are 2” right 

circular cylinders filled with an organic scintillator composed of a xylene solution, (CH₃)₂C₆H₄.  
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Figure 6. Schematic drawing of the Cyclotron and Cave 02, where the experiment was setup.  The path of the 
deuterons, breakup into neutrons, and path of neutrons into Cave 02 is depicted. 
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Figure 7. Experimental setup within Cave 02 at the 88-Inch Cyclotron.  The ETA is the metal disk with 
detector 1 directly behind it.  Detector 2 is centered 45° off axis from the ETA, and detector 3 is at 90°. 

For each of the three detectors, calibration data was collected using an AmBe source, 

a 137Cs source, and a 60Co source.  For this setup, the sources were taped to the side of the detectors 

for run 2 and the detectors were arranged equidistant from the source in run 3 as shown in Figure 

8 and Figure 9.  
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Figure 8. Calibration of one of the EJ-309 detectors for calibration run 2 using the 137Cs source. 
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Figure 9. The three detectors arranged around a 60Co for the calibration run 3 measurements. 

Table 2 details which detector was placed at each position, along with the digital data 

acquisition (DAQ) channel number.   

Table 2. Detector position to DAQ channel for run 3 of the calibration. 

EJ-309 

Detectors 

Calibration 

Position 

Around Source 

(degrees) 

Experiment 

Position from 

Front of ETA 

(degrees) 

DAQ 

Channel 

Detector 1 0 0 0 

Detector 2 120 45 2 

Detector 3 240 90 4 
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3.2 Data Analysis 

Figure 10. The general signal processing chain used to reduce the raw waveform data into a neutron pulse 
height spectrum. 

The general analysis process is shown in Figure 10.  The raw data was collected in previous 

research [15], and the signal processing steps to turn the raw data into a neutron pulse height 

spectrum (PHS) were developed in this research.  For this process, the raw data was collected from 

the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory.  The following are the key steps 

in the analysis used: 

• A baseline estimating algorithm is run to correct for baseline drift.

• The individual waveforms are run through a pile-up rejection algorithm to remove signals

where multiple pulses overlap.

• The optimal integration window is found for the given data set.

• The data is analyzed using several methods of pulse shaped discrimination (PSD) to

determine the best parameters for separating the gammas from neutrons.



www.manaraa.com

26 

• The data is processed using the parameters found in the previous steps and compressed into

the format needed for the creation of the pulse height spectra (PHS) and determine linear

cuts for software threshold and PSD value between neutron and gamma peaks.

• PSD is performed to separate the neutrons and gammas for analysis.

• Pulse height cuts are applied to correspond to the channels of complete data collection

resulting from a non-linear software threshold.

• The remaining data is turned into a histogram showing the number of neutrons detected at

each of the detector’s energy channels.

With the data already in the ROOT format, the first step used was to develop the optimal

parameters needed to process the data.  For this research, the AmBe data was used due to the 

smaller file sizes and possessing many of the same features as the ETA data.  For the calibration 

data, runs 0 and 1 were ignored due to changing the gain and pre-trigger on the detectors.  The 

data used for the pre-experiment calibration was in Run 2 while the post-experiment calibration 

data was from Run 3.  The following section show the steps used to analyze the raw data using the 

repository of tools developed by BANG group. The repository used was pulled on August 2017, 

and subsequent changes to the repository for this research were added to the repository.  The 

specific commands and inputs used to execute each step are shown in Appendix A. 

3.2.1 AmBe PSD Parameters 

To perform the energy calibration, it is necessary to separate the gamma pulses from the 

neutron data in the AmBe data. First, it is necessary to determine the parameters needed to fill out 

the DSP parameter file, as shown in Appendix B.  The DSP parameter file contains the necessary 

detector dependent information to process the waveform data.  For all of the data, the time 
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component is given in samples, where one sample equates to 2 ns.  The uncalibrated pulse height 

is in terms of least significant bits (LSB), where the unit conversion to charge is 20 fC/LSB. 

The threshold and smoothing window are determined using the 

SCDigitalDaqPostProcessing::developPileupRejectionParameters() algorithm.  The optimal 

smoothing window using a center moving average, and the trigger threshold is the threshold on 

the raw data for the detection of a pulse.  This algorithm also passes along the information needed 

for the baseline subtraction routine that cancels detector baseline drift.  An example pile-up event 

is shown in Figure 11. 

 

Figure 11. Example pile-up event from the AmBe calibration run 2.  Here a smoothing window of 9 samples is 
used on the channel 0 data, and the integration window for this sample is 150 samples.  As the two peaks are 

within the window, this sample is going to be flagged and thrown out as pile-up during processing. 

 The smoothing window for the data was determined iteratively by starting with a value of 

3 and working to higher values, then looking at the noise level after changing the values and 

determining if it changed the pulse more than needed.  The detection threshold was also determined 

in this step by picking a threshold that was above the smoothed noise level.  It was found that the 

smoothing window and the threshold were the same for all channels.  For the AmBe, the smoothing 
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window that worked the best for channel 0 was 9 with a threshold of 12.  If the smoothing window 

became larger, the shape of the pulse would begin to distort or the start of the pulse would appear 

to be cutoff.  If the window was too small the noise would distort the pulse end.  For the threshold, 

12 was used so as to be above the noise while still catching the smaller amplitude pulses. 

Once the data was properly smoothed and a threshold determined, the optimal integration 

window for pulse analysis was determined.  The optimal integration window was found 

qualitatively by comparing the mean pulse height value (mean x in Table 3) of the PSD spectra for 

the same PSD parameters.    The integration windows using a set of PSD values and increasing by 

25 samples from 75 to 200.   

From comparing the difference in the x mean, which is the average pulse height, the 

optimal integration window chosen was 150 samples due to the decreasing rate of change in the 

mean from average pulse height for 125 and 150 samples.  The average pulse height and the 

difference with the last set is shown in Table 3.  This set of commands was also run for the clean 

beam and ETA data and the results were similar. 

Table 3. Differences in the average pulse height as the integration window is increased. 

Samples Average Pulse height Difference 

75 5416 

100 5522 106 

125 5598 76 

150 5653 55 

175 5696 43 

200 5730 34 
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The SCDigitalDaqPostProcessing::calibrateDSP() algorithm was used to determine the 

optimal PSD parameters.  It uses the raw, unprocessed file and loops over peak and tail windows 

in user defined steps for user defined minimum and maximum windows to determine the set of 

PSD parameters with the highest figure of merit as defined in Equation 9 for each channel.   

A PSD spectrum was created and FOM was calculated for all sets of PSD values within 

the user defined range.  This allowed for the quantitative determination of which set of parameters 

had both the best FOM, as defined in Equation 9, and a qualitative determination of which set of 

values had the greatest degree of separation near the low channel software threshold.  The same 

routine is run again with a smaller window around the optimal parameters from the first run to 

refine the search space repeating the above analysis methodology. The best values for each 

parameter using both the tail-to-peak and tail-to-total methods are shown in Table 4.  While there 

is an option to use the 90-10 method, this portion of the programming was not working at the time 

of analysis. 

The PSD plot for AmBe channel 0 using the tail-to-peak method is shown in Figure 12, 

and the tail-to-total method is shown in Figure 13.  The best was defined by the plot which had the 

best-defined separation at the bin that was closest to the software threshold.  Tail-to-Peak is the 

method that achieves the best results based on the FOM, show in Table 4, and the degree of 

separation, shown in Figure 12.  
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Table 4. PSD parameters found by the SCDigitalDaqPostProcessing::calibrateDSP() algorithm for an AmBe 
source, and the FOM associated with each set. 

Tail to Peak Method 

Channel 
Peak 

Window 

Tail 

Offset 
Window FOM 

0 18 14 29 1.788 

2 23 14 37 1.754 

4 19 14 36 1.688 

Tail to Total Method 

Channel 
Peak 

Start 

Tail 

Offset 

Integration 

Length 
FOM 

0 12 15 150 1.167 

2 12 15 150 1.119 

4 12 15 150 1.049 

 

 

Figure 12. PSD parameter verse energy bin for channel 0 using the tail-to-peak method with AmBe source 
and the PSD parameters shown in Table 4 
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Figure 13. PSD parameter verse energy bin for channel 0 using the tail-to-total method with AmBe source and 
the PSD parameters from Table 4. 

 To determine where to perform the linear PSD cuts, a y-projection was used to show the 

minimum between the neutron and gamma band along the energy channel cut.  For the AmBe run 

2 data, the cut lines are shown in Table 5 for the different detectors.  

Table 5. List of the linear cuts for each channel of the AmBe data. 

Detector 

Channel 

Number 

PSD Cut 
Energy Channel 

Cut 

0 0.21 1300 

2 0.22 1300 

4 0.23 1300 
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Figure 14. Y-projection for Detector 1 from the AmBe source for the bin covering energy channel 1300-1305. 

The next step was to take all of the run 2 and 3 calibration files along with a waveform 

parameter file created from the parameters above and run the 

SCDigitalDaqPostProcessing::reduceFilesToScintillatorEvents() function to reduce the full 

waveform tree structure to the ScintillatorEvent  structure necessary for the calibration, PSD, and 

pulse-height analysis functions.     

The WFparameterstxt files, as shown in Appendix B, are necessary for the processing of 

the data files.  This file has the channel number, PSD parameters, pileup rejection parameters, 

clipping information, and baseline estimating portions that are detector and source specific.  This 

loops over the data and reduce the pulses down from a waveform to a PSD value and an integrated 

amplitude.  This group of commands was continued for all the calibration data files.  These files 

are then combined so that all of detector 1 for each run is in the channel_0_events of the files. 
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Now, the cuts are applied and the gamma histograms are saved to different files dependent 

on the channel numbers.  The cuts used for AmBe were linear cuts along the PSD value and the 

pulse height channel for each detector. 

This set of commands will take a pulse height spectrum and separate the gamma and 

neutron spectra based on the linear cut that was applied.  The pulse height spectra are then saved 

with “_gam” or “_neu” specifiers to identify whether the associated histogram is gamma or neutron 

particles.  As 60Co and 137Cs are pure gamma sources, the pulse height spectra is already processed 

and do not require any cuts. 

Next, the calibration files and the simulated calibration files need to be combined into a single 

file for each.  This was run from the command line in the terminal using the rootcp command.  The 

commands were repeated for the detectors from channels 2 and 4 as well. 
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IV. Analysis and Results 

 In this section, the PSD parameters are finalized, cuts are applied, and the uncalibrated 

PHS for the clean beam and the full ETA are created and analyzed. 

4.1 Apply PSD Parameters 

4.1.1 Clean Beam Data 

To prepare the data, it is necessary to remove the gamma events from the data.  For both 

the clean beam run 2 and the ETA run 1 data sets, a new set of PSD values were needed.  Using 

the same set of commands from the finding PSD parameters in the AmBe section in Appendix A 

and SCDigitalDaqPostProcessing::calibrateDSP(), the optimized PSD parameters found are 

shown in Table 6 from the file CleanBeam_002.5.root. 

 

Table 6. PSD parameters found by the SCDigitalDaqPostProcessing::calibrateDSP() algorithm for clean beam 
run 2 data and the FOM associated with each set. 

PSD Parameters 

Channel 
Peak 

Window 

Tail 

Offset 

Tail 

Window 
FOM 

0 16 15 25 1.638 

2 14 12 31 1.669 

4 12 12 31 1.601 

 

PSD spectra generated using these parameters are shown in Figure 15 – Figure 17 for 

detectors 1, 2, and 3, respectively.  In Figure 15, there are three separate horizontal peaks going 

from bottom to top where the bottom one is the gamma peak, followed by the neutron peak and 

then the alpha peak.  The alpha peak is created within the detector from some of the fast neutron 
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absorption by carbon in the detectors, which forms an unstable compound nucleus followed by the 

emission of alpha particles.  The alpha peak is also noticed in the full ETA detector 1 data.  The 

data from detectors 2 and 3 do not contain an alpha peak due to these detectors not being in direct 

view of the neutron beam and only see scattered neutrons.  Those neutrons that are detected at 

detectors 2 and 3 are lower in energy and hence don’t have sufficient energy to cause (n,alpha) 

reactions. Additionally, as is apparent from Figures 18 and 19 there are much fewer neutrons 

interacting in detectors 2 and 3. 

 

Figure 15. Detector 1 PSD Spectrum from the clean beam run 2 data using the parameters found in Table 6. 

 

Figure 16. Detector 2 PSD Spectrum from the clean beam run 2 data using the parameters found in Table 6. 
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Figure 17. Detector 3 PSD Spectrum from the clean beam run 2 data using the parameters found in Table 6. 

4.1.2 ETA Data 

The SCDigitalDaqPostProcessing::calibrateDSP() command was run again with the file 

ETA_001.4.root and Table 7 shows the parameters broken down by channel for the combined run. 

 

Table 7. PSD parameters found by the SCDigitalDaqPostProcessing::calibrateDSP()  algorithm for ETA run 1 
data and the FOM associated with each set. 

PSD Parameters 

Channel 
Peak 

Window 

Tail 

Offset 

Tail 

Window 
FOM 

0 10 14 28 1.690 

2 10 14 28 1.693 

4 10 14 28 1.693 

 

Similar to the clean beam, these parameters are used to generate the PSD spectra are shown 

in Figure 18 – Figure 20, for detectors 1, 2, and 3, respectively.  The alpha peak can be seen in 

Figure 18 above both the neutron and gamma peaks.  For this run the alpha peak is nothing more 
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than a bump due to being scattered by the ETA.  Detectors 2 and 3 are collecting the scatter off of 

the ETA from the beam of neutrons hitting it cone part first.   

 

Figure 18. Detector 1 PSD Spectrum from the ETA run 1 data using the parameters in Table 7. 

 

Figure 19. Detector 2 PSD Spectrum from the ETA run 1 data using the parameters in Table 7. 
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Figure 20. Detector 3 PSD Spectrum from the ETA run 1 data using the parameters in Table 7. 

 

4.2 Pulse Height Spectra 

4.2.1 Clean Beam Data 

Figure 21 – Figure 23 show the uncalibrated neutron counts per energy channel from the 

clean beam run 2 data.  These are separated by detector and are histograms of counts per energy 

channel.  This is after applying the linear cuts within the function 

DDaqPostProcessing::makeDualPhSpectra().  The linear cuts were found as described in Section 

3.2.1.  The y-projections of each at the energy channel cut are shown in Appendix C.2.  The goal 

of this function is to create a neutron only spectrum and a gamma only spectrum of the data set of 

interest.  Table 8 shows the cuts for each channel in the data set from the beam only data.  As was 

expected for the clean beam data, detector 1 contains the vast majority of the neutron particles due 

to detectors 2 and 3 not being in the beam path. 
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Table 8. List of the linear cuts for each channel of the clean beam Run 2 data. 

Detector 

Channel 

Number 

PSD Cut 
Energy 

Channel Cut 

0 0.21 1300 

2 0.20 1300 

4 0.20 1300 

 

 

Figure 21. Uncalibrated neutron counts per energy channel for Detector 1 from clean beam run 2 using the 
cuts from Table 8. 
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Figure 22. Uncalibrated neutron counts per energy channel for Detector 2 from the clean beam run 2 using 
the cuts from Table 8. 

 

Figure 23. Uncalibrated neutron counts per energy channel for Detector 3 from the clean beam run 2 using 
the cuts from Table 8. 

4.2.2 Full ETA  

Figure 24 – Figure 26 show the uncalibrated neutron counts per energy channel from the 

ETA run 1 data separated by detector.  This is after applying the linear cuts within the function 

DDaqPostProcessing::makeDualPhSpectra().  The linear cuts were found as described in Section 

3.2.1.  The y-projections of each at the energy channel cut are shown in Appendix C.3.  The goal 
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of this function is to create a neutron only spectrum and a gamma only spectrum of the data set of 

interest.  Table 9 shows the cuts for each channel in the data set from the full ETA data. 

The ETA did increase the scatter of neutrons into detectors 2 and 3 from the main beam as 

expected.  More analysis is needed to determine if the expected spectrum was created with the 

ETA.  

 

Table 9. List of the linear cuts for each channel of the ETA data. 

Detector 

Channel 

Number 

PSD Cut  
 Energy Channel 

Cut 

0 0.31 1300 

2 0.32 1300 

4 0.35 1300 

 

 

Figure 24. Uncalibrated neutron counts per energy channel for Detector 1 from the ETA run 1 using the cuts from 
Table 9. 



www.manaraa.com

 

42 
 

 

Figure 25. Uncalibrated neutron counts per energy channel for Detector 2 from the ETA run 1 using the cuts from 
Table 9. 

 

Figure 26. Uncalibrated neutron counts per energy channel for Detector 3 from the ETA run 1 using the cuts from 
Table 9. 
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V. Conclusions and Future Work 

This research modified an existing code and created an analysis chain.  The purpose was to 

determine the neutron pulse height spectrum from the Lawrence Berkeley National Laboratory 88-

Inch Cyclotron after spallation with a tantalum target and collect the scattered spectrum off the 

ETA with EJ-309 liquid organic scintillators. The following section discusses, in detail, some 

conclusions that were drawn, specifically in reference to the objectives posed in Section 1.2.1. 

5.1 Conclusions 

In this research, full waveform data was taken from the Lawrence Berkeley National 

Laboratory 88-Inch Cyclotron for the ETA experiment.  This data was then run through various 

algorithms to determine the optimal PSD method and the optimal parameters for the integration 

window, smoothing window, and PSD parameters.  The data was then processed and a PSD 

spectrum was created.  With the PSD spectrum, the linear cuts along the PSD value and the energy 

channels were determined for the data sets.  With the linear cuts, the neutrons were separated from 

the gammas and placed into histograms showing the counts verse energy channel. 

Based on the analysis of the signal data, using the full waveform data does provide better 

flexibility in determining the optimal PSD parameters and adapting and modifying PSD methods 

and window definitions, which in turn likely means better discrimination between gammas and 

neutrons at low pulse heights.  This research appears to have been able to get a better PSD than 

previously found.  Previous work only looked at using the Tail-to-Total method and for the case 

of this research it was found the Tail-to-Peak method gave us a better discrimination, as seen in 

Figure 12 and Figure 13.  Due to using the full waveform data, this research was also able to better 

home in on the best PSD parameters, thereby allowing this research to better discriminate between 

gamma and neutron particles at low pulse heights.   
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5.2 Recommendations for Future Research 

The calibration was not completed for this research, and this would be required for a direct 

comparison between this work analyzing and previous analysis.  Along with the calibration, the 

comparison needs to be made to determine if any drift occurred in the detectors from either 

equipment heating up or from neutron activation of materials.   

For this research, only linear cuts were applied.  This is due to difficulties occurring when 

the Gaussian fitting routine was used.  The clean beam and ETA data would both be improved by 

applying a fitted cuts routine to the data for the PSD cuts since there is overlap in the two 

distributions at low pulse heights   

Another part of the coding that was not working correctly was the 90-10 PSD method.  It 

would be interesting to know if using this method would produce better PSD results.  This method 

should have worked very well based on literature; however, when it was looked at for this research 

the PSD appeared to have been clipped.  The root cause of this was not determined in this research. 

The only data analyzed was the clean beam data and the full ETA.  There are still several 

sets of full waveform data from the buildup of materials to be analyzed.  These materials are 

bismuth, the aluminum case, praseodymium, silicon, and tungsten.   

The natural progression of this research would also be to unfold the calibrated PHS.  The 

unfolded neutron spectra could then be compared to an MCNP or a GEANT4 simulation of the 

expected spectrum.  Differences may point to gaps in nuclear data for the neutron energies and 

reaction channels examined in this experiment. 
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Appendix A 

A.1 Energy Calibration 

A.1.1 Develop Pile-up Rejection Parameters 

After typing the commands, a canvas will appear, similar to Figure 11, and the user will be 

given the option to change the smoothing window and the threshold.  The 0 and 10000 are arbitrary 

pulses to look at for pile-up.  The final step is repeated for channels 2 and 4 as well.   The goal for 

this portion of the code is to determine the triggering threshold for finding the pulses above the 

noise and determining the smoothing window based on the center moving average. 

>>SCDigitalDaqPostProcessing ambe 

>>ambe.loadFile(“AmBe_002.0.root”) 

>>ambe.developPileupRejectionParameters(0,10000,0,9,12) 

A.1.2 Develop Optimal Integration Window 

 This function DigPSDAnalysis::getTailToPeakHist() requires the data file to be processed 

already, which is addressed by the first set of commands to process and combine the two AmBe 

Run 2 files into one processed TTree.  The goal of the first group of commands is to combine the 

run files into one so there is only one file per run.  The second group of commands is to create a 

PSD spectrum based on the parameters you give the algorithm. 

>>SCDigitalDaqPostProcessing part1 

>>part1.loadFile(“AmBe_002.0.root”) 

>>part1.processTreesForTailToPeakAnalysis(“test1.root”) 

>>SCDigitalDaqPostProcessing part2 

>>part2.loadFile(“AmBe_002.1.root”) 

>>part2.processTreesForTailToPeakAnalysis(“test2.root”) 
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>>.q 

>>hadd ambetree.root test1.root test2.root 

>>root 

>>DigPSDAnalysis psd 

>>psd.loadFile("ambetree.root") 

>>psd.getTailToPeakHist(0,16,28,16,200,-1) 

>>TBrowser a 

 

A.1.3 Develop Optimal PSD Parameters 

The process to determine the optimal PSD method and the associated parameters uses the 

SCDigitalDaqPostProcessing::calibrateDSP() function.  This set of commands requires 

unprocessed files.  The first set of user prompts are to determine the channels analyzed, PSD 

method, and common starting point.  The user inputs the channels to ignore in this process, the 

PSD method, and the triggering threshold for the top part of the inputs.  The algorithm then, 

processes the data in the channels and asks for the user to define the minimum and maximum 

values for the window of the peak, the offset for the tail to start and the window of the tail for the 

pulse.  The algorithm then incrementally loops over the values to create a PSD spectrum for all 

combinations within the windows.  The code also calculated the Figure of Merit and finds the one 

with the highest FOM, the code defines that set of parameters as the optimal PSD. 

>>SCDigitalDaqPostProcessing test 

>>test.loadFilepost.loadFile("CleanBeam_002.3.root") 

>>test.calibrateDSP()  

Are there any channels present that should be ignored while tuning? 

(yes,no): 

>>yes 

enter the channel number 

>>2 
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Is there another channel to ignore? 

>>yes 

enter the channel number 

>>4 

Is there another channel to ignore? 

>>yes 

enter the channel number 

>>14 

Is there another channel to ignore? 

>>no 

What psd method would you like to use? 

Tail to Peak: 1 

Tail to Total: 2 

90 10 Delta T: 3  

>>1 

Would you like to use a common start or one determined from a leading 

edge discriminator? 

If you would like to use leading edge, enter -1*threshold in bits  

If you would like to use a common start please reference the plot and 

enter the sample number  

>>-16 

 

Enter Short Gate Min.(8) 

>>8 

Enter Short Gate Max.(28) 

>>28 
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Enter Tail Min.(20) 

>>20 

Enter Tail Max.(60) 

>>60 

Enter tailOffsetMin.(6) 

>>6  

Enter tailOffsetMax.(24) 

>>24 

Enter Integration Length(200) 

>>150 

The results obtained were 

 

The best figure of merit is 1.76518 

The best parameters appear to be  

Peak Window = 12 

Tail Window = 30 

Tail Offset = 15 

 

Round 2 is to determine a finer window for determining the parameters. 

 

Enter Short Gate Min.(8) 

>>8 

Enter Short Gate Max.(28) 

>>18 

Enter Tail Min.(20) 

>>24 
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Enter Tail Max.(60) 

>>36 

Enter tailOffsetMin.(6) 

>>6  

Enter tailOffsetMax.(24) 

>>24 

Enter Intergration Length(200) 

>>150 

The best figure of merit is 1.77612 

The best parameters appear to be  

Peak Window = 16 

Tail Window = 28 

Tail Offset = 15 
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A.1.4 File Names for the Calibration Files 

Table 10. Combined file names for the calibration root files. 

Run 2 

AmBe AmBe_002.0.root AmBe_002.0_SE.root AmBeRun2_SE.root 

  AmBe_002.1.root AmBe_002.1_SE.root 

Co60 Co60_002.0.root Co60_002.0_SE.root Co60Run2_SE.root 

  Co60_002.1.root Co60_002.1_SE.root 

Cs137 Cs137_002.0.root Cs137_002.0_SE.root Cs137Run2_SE.root 

  Cs137_002.1.root Cs137_002.1_SE.root 

Run 3 

AmBe AmBe_003.0.root AmBe_003.0_SE.root AmBeRun3_SE.root 

  AmBe_003.1.root AmBe_003.1_SE.root 

Co60 Co60_003.0.root Co60_003.0_SE.root Co60Run3_SE.root 

  Co60_003.1.root Co60_003.1_SE.root 

Cs137 Cs137_003.0.root Cs137_003.0_SE.root Cs137Run3_SE.root 

Background Background_003.0.root Background_003.0_SE.root BackgroundRun3_SE.root 

 

 

A.1.5 Reduce Files to Scintillator Events 

There are two different methods for getting the scintillator events and combine files by 

source or run.  This batch of commands also separates the various channels so the information is 

able to be processed correctly.  Finally, the files from the various runs are merged together.  For 

the AmBe data, the following lines were written in the ROOT command line: 
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>>SCDigitalDaqPostProcessing post 

>>post.loadFile("AmBe_002.0.root") 

>>post.reduceToScintillatorEvent("AmBe_002.0_SE.root","WFparameterstx”

)  

Or: 

>>SCDigitalDaqPostProcessing post 

>>post.reduceFilesToScintillatorEvents(“names.txt”,” WFparameterstxt”) 

 

Combine files so there is one file per expermiment phase: 

>>Had AmBeRun2_SE.root AmBe_002.0_SE.root AmBe_002.1_SE.root 

A.1.6 Make Pulse Height Spectra 

The function DDaqPostProcessing::makeDualPhSpectra() takes the data file that 

has been processed, applies the linear cuts in the x and y direction, then creates a PHS for the 

gammas and neutrons.  The commands are as follows for the AmBe example: 

>>DDaqPostProcessing test 

>>test.loadFile("AmBe_2_Total_SE.root") 

What is the tree name? 

>>channel_0_events 

Tree Name : channel_0_events 

>> test.makeDualPhSpectra("Spectra_AmBe_run2_0.root") 

Please input the linear psd cut value:  

>>.18 
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For the Cs and Co, since they are pure gamma sources, they use a slightly different set of 

commands.  The end result is the same where you will now have a PHS. 

>>DDaqPostProcessing Cs 

>>Cs.loadFile("Cs137Run2_SE.root") 

What is the tree name? 

>>channel_0_events 

>>Cs.getPhSpectrum() 

>>TBrowser a 

Save the PhSpectrum_0 as Spectra_Cs137_run2_0.root 

 

>>DDaqPostProcessing Co 

>>Co.loadFile("Co60Run2_SE.root") 

What is the tree name? 

>>channel_0_events 

>>Co.getPhSpectrum() 

>>TBrowser a 

Save the PhSpectrum_0 as Spectra_Co60_run2_0.root 
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Appendix B 

B.1 WFParametertxt file for Calibration data 

//# 

15 0 

/# 

0 

0 -12 18 14 29 150 

1 9 10 

0 10 

//# 

15 0 

/# 

2 

0 -12 23 14 37 150 

1 9 10 

0 10 

//# 

15 0 

/# 

4 

0 -12 19 14 36 150 

1 9 10 

6 10 
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B.2 WFParametertxt file for CleanBeam data 

//# 

12 0 

/# 

0 

0 -12 16 15 28 150 

1 9 12 

0 12 

//# 

12 0 

/# 

2 

0 -12 16 15 28 150 

1 9 12 

0 12 

//# 

12 0 

/# 

4 

0 -12 16 15 28 150 

1 9 12 

0 12 
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B.3 WFParametertxt file for ETA data 

//# 

12 0 

/# 

0 

0 -12 10 14 36 150 

1 9 12 

0 12 

//# 

12 0 

/# 

2 

0 -12 14 12 31 150 

1 9 12 

0 12 

//# 

12 0 

/# 

4 

0 -12 12 12 31 150 

1 9 12 

0 12 
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Appendix C 

C.1 Y-Projections for AmBe Data 

 

Figure 27. Y-projection for Detector 1 from the AmBe source for the bin covering energy channel 1300-1305. 

 

Figure 28. Y-projection for Detector 2 from the AmBe source for the bin covering energy channel 1300-1305. 
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Figure 29. Y-projection for Detector 3 from the AmBe source for the bin covering energy channel 1300-1305. 

C.2 Y-Projections for Clean Beam Data 

 

Figure 30. Y-projection for Detector 1 from the clean beam source for the bin covering energy channel 1305-
1320. 
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Figure 31. Y-projection for Detector 2 from the clean beam source for the bin covering energy channel 1305-
1320. 

 

Figure 32. Y-projection for Detector 3 from the clean beam source for the bin covering energy channel 1305-
1320. 
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C.3 Y-Projections for ETA Data 

 

Figure 33. Y-projection for Detector 1 from the ETA source for the bin covering energy channel 1305-1320. 

 

Figure 34. Y-projection for Detector 2 from the ETA source for the bin covering energy channel 1305-1320. 
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Figure 35. Y-projection for Detector 3 from the ETA source for the bin covering energy channel 1305-1320. 
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